Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence.

نویسندگان

  • Amrik Sen
  • Pablo D Mininni
  • Duane Rosenberg
  • Annick Pouquet
چکیده

Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two-dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale Lf, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the inverse cascade range at a small but fixed Rossby number, Rof≈0.05. Several numerical simulations with helical and nonhelical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with reasonably large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a ∼k⊥-5/3 scaling, and the other that corresponds to a steeper ∼k⊥-3 spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to the 2D modes. The spectrum that emerges depends on the anisotropy of the forcing function, the former solution prevailing for forcings in which more energy is injected into the 2D modes while the latter prevails for isotropic forcing. In the case of anisotropic forcing, whence the energy goes from the 2D to the 3D modes at low wave numbers, large-scale shear is created, resulting in a time scale τsh, associated with shear, thereby producing a ∼k-1 spectrum for the total energy with the horizontal energy of the 2D modes still following a ∼k⊥-5/3 scaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalings of Inverse Energy Transfer and Energy Decay in 3-D Decaying Isotropic Turbulence with Non-rotating or Rotating Frame of Reference

Energy development of decaying isotropic turbulence in a 3-D periodic cube with non-rotating or rotating frames of reference is studied through direct numerical simulation using GPU accelerated lattice Boltzmann method. The initial turbulence is isotropic, generated in spectral space with prescribed energy spectrum E(κ)~κm in a range between κmin and ...

متن کامل

On the Spectrum of Magnetohydrodynamic Turbulence

We propose a phenomenological model for incompressible magnetohydrodynamic turbulence. We argue that nonlinear-wave interaction weakens as the energy cascade proceeds to small scales, however, the anisotropy of fluctuations along the large-scale magnetic field increases, which makes turbulence strong at all scales. To explain the weakening of the interaction, we propose that smallscale fluctuat...

متن کامل

The effect of small-scale forcing on large-scale structures in two-dimensional flows

The effect of small scale forcing on large scale structures in β-plane twodimensional (2D) turbulence is studied using long-term direct numerical simulations (DNS). We find that nonlinear effects remain strong at all times and for all scales and establish an inverse energy cascade that extends to the largest scales available in the system. The large scale flow develops strong spectral anisotrop...

متن کامل

The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties are increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analy...

متن کامل

Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets.

The Kolmogorov-Batchelor-Kraichnan (KBK) theory of two-dimensional turbulence is generalized for turbulence on the surface of a rotating sphere. The energy spectrum develops considerable anisotropy; a steep -5 slope emerges in the zonal direction, while in all others the classical KBK scaling prevails. This flow regime in robust steady state is reproduced in simulations with linear drag. The co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012